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Abstract

South Africa is in the fortunate position of having access to high-quality wind
and solar resources promising energy production costs well below the ones
projected for future installations of thermal generation; yet the feasibility
of a low carbon energy system is still under scrutiny. This study introduces
a spatially and temporally resolved techno-economic model co-optimising
generation and transmission capacity investments and operation. 27 supply
regions in South Africa are equipped with a year of time-series in hourly res-
olution based on the IRP2016 base-case assumptions. Six different scenarios
representing different restrictions on renewable generation and mitigation ef-
forts of GHG emissions are evaluated and discussed. 70% of energy from
renewable sources were found to be cost-optimally integrated using flexible
gas generation and the expansion of several transmission corridors. A 95%
CO2 reduction leads to a moderate 20% cost increase. The open-source
nature of the model and restriction to freely available data encourages an
accessible and transparent discussion about the future South African energy
system, primarily based on renewable wind and solar resources.

Keywords: Electricity system model, renewable power generation,
transmission networks, least-cost optimisation, open source.

1. Introduction

South Africa was attested high-quality wind and solar resources with
potential for very high load factors and a weak seasonality that simplifies
their integration into the electricity system [1]. Several GW of solar PV
capacities can be integrated without major restructuring of the electricity
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grid [2, 3]. Nevertheless, the latest Integrated Resource Plan by the South
African Department of Energy (DOE) proposes only a slow uptake of re-
newable energy sources and bases its electricity plan on new Nuclear and
Coal power stations [4, 5]. Meanwhile, South Africa pledged to reduce its
GHG emissions starting from at latest 2025, and the electricity sector is an
easy target.

This paper presents a spatially and temporally resolved model for per-
forming least-cost techno-economic investment and operation optimisations
of the South African electricity system. In 27 supply regions the hourly de-
mand in the reference year 2040 has to be met by existing Coal, Nuclear or
Hydro generation capacities or by generation from new open-cycle or closed-
cycle gas turbines, coal plants, nuclear reactors, wind turbines or solar PV
panels. The shape of the demand time-series as well as of renewable gen-
eration availability derive from historical load and weather data exhibiting
the actual spatio-temporal correlations. The technology portfolio is com-
plemented by battery storage and pumped hydro storage. The model is
exlusively based on freely available data and open technologies.

In Section 2 and 3 the data sources and processing methods are pre-
sented; the optimisation results are presented in Section 4; limitations of
the model are discussed in Section 5; conclusions are drawn in Section 6.

2. Methods: Model

This study models a future, renewable South African electricity network
geared towards forecasts of the reference year 2040. The PyPSA framework
underlying the PyPSA-ZA model implements a partial equilibrium model
optimising both short-term operation and long-term investment in the en-
ergy system as a linear problem using the linear power flow equations [6, 7].
It determines the optimal generation fleet to serve hourly electricity demand
in the reference year. The intermediate build-up steps from today to 2040
are not assessed.

2.1. Objective function

The model minimises the total annual system costs as

min
Gn,s,F`,
gn,s,t,f`,t

[∑
n,s

cn,sGn,s +
∑
`

c`F` +
∑
n,s,t

on,sgn,s,t

]
, (1)

and consists of the capacities Gn,s at each bus n for generation and storage
technologies s and their associated annualized fixed costs cn,s, the dispatch
gn,s,t of the unit at time t and the associated variable costs on,s. Further,
the branch capacities F` for each branch ` and their annualized fixed costs c`
are also included. The branch flows f`,t do not contribute to the total costs.
The optimisation is run over all hours t in a year with varying weather and
demand conditions.

2



2.2. Generator constraints

The dispatch of conventional generators gn,s,t is constrained by their
capacity Gn,s

0 ≤ gn,s,t ≤ Gn,s ∀n, s, t . (2)

The dispatch is limited by ramp rate constraints run,s and rdn,s per unit of
the generator nominal power1,

−rdn,sGn,s ≤ (gn,s,t − gn,s,t−1) ≤ run,sGn,s . (3)

The maximum producible power of renewable generators depends on the
weather conditions, which is expressed as an availability ḡn,s,t per unit of its
capacity:

0 ≤ gn,s,t ≤ ḡn,s,tGn,s ∀n, s, t . (4)

The power capacity Gn,s is also subject to optimization up to a maximum
installable potential Ḡn,s restricted by available geographic area:

0 ≤ Gn,s ≤ Ḡn,s ∀n, s . (5)

2.3. Storage operation

The energy levels en,s,t of all storage units have to be consistent between
all hours and are limited by the storage energy capacity En,s

en,s,t = ηn,s,0en,s,t−1 + ηn,s,+ [gn,s,t]
+ − η−1

n,s,− [gn,s,t]
− + gn,s,t,inflow − gn,s,t,spillage ,

(6)

0 ≤ en,s,t ≤ En,s ∀n, s, t . (7)

Positive and negative parts of a value are denoted as [·]+ = max(·, 0), [·]− =
−min(·, 0). The storage units have a charging efficiency ηn,s,+, a discharging
efficiency ηn,s,−, in-flow (e.g. river in-flow in a reservoir) and spillage. The
energy level is set to be cyclic, i.e. en,s,t=0 = en,s,t=T .

2.4. Power balance and transmission constraints

The (inelastic) electricity demand dn,t at each bus n must be met at
each time t by either local generators and storage or by the flow f`,t from a
transmission line `∑

s

gn,s,t − dn,t =
∑
`

Kn` f`,t ↔ λn,t ∀n, t , (8)

where Kn` is the incidence matrix of the network and λn,t is the marginal
price at the bus. This equation implements Kirchhoff’s Current Law (KCL).

1Currently only implemented for existing Coal power stations.

3



For the physicality of network flows, additionally Kirchhoff’s Voltage Law
(KVL) ∑

`

C`cx`f`,t = 0 ∀c, t , (9)

expressed with a cycle basis C`c and the series inductive reactance x` must
be enforced [8].

The flows in all branches are constrained by their capacities F`

|f`,t| ≤ F` ∀ `, t . (10)

Since the expansion of line capacities F` representing the addition of
new circuits leads to decreasing line impedances x`, Equation 9 introduces
in principle a bilinear coupling. We maintain the linearity and therefore com-
putational speed by solving the optimisation problem with fixed impedances
x`, updating them and re-solving in up to 6 iterations to ensure convergence,
following the methodology of [9].

2.5. CO2 emission constraint

CO2 emissions in the CO2-Limit scenarios are limited by a cap CAPCO2 =
10 MtCO2 corresponding to a 95% reduction from today’s emissions by the
electricity sector, implemented using the specific emissions es in CO2-tonne-
per-MWh of the fuel s and the efficiency ηn,s of the generator:∑

n,s,t

1

ηn,s
gn,s,t · es ≤ CAPCO2 ↔ µCO2 . (11)

µCO2 is the shadow price of this constraint.

3. Methods: Data

3.1. Network topology

The South African transmission grid has been divided into 27 supply
areas. They abstract underlying network topology to deliver electricity to
between 0.1 and 7 million people each. The capacities necessary to con-
nect them strongly depend on the future layout of generation capacities in
South Africa and is ideally optimised jointly. The simplified network model
shown in Figure 1 consists of one bus in each supply area located at the
centroid of the geographical area2 and transmission lines connecting all ad-
jacent areas. The lines are modelled as standard overhead AC lines with
length of 1.25 times geodesic distance and the electrical parameters of a
typical 380 kV-line [10]. The current inter-area transmission capacities have

2The buses for the supply areas NAMAQUALAND and PRETORIA have been moved
slightly away from the centroid back into the area.
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Figure 1: Network model. 27 supply areas as buses. Adjacent supply areas have been
connected with typical 380 kV-lines.

been determined by summing the capacities of all transmission lines above
and including 275 kV of the Electricity Transmission and Distribution Grid
Map (2017) dataset by the World Bank Group [11]. The model may add
line capacities between all directly adjacent supply regions.

3.2. Electricity demand

The shape of the electricity demand as an hourly aggregated time-series
for the four years 2009-2013 was provided by ESKOM [12] and was scaled
linearly to the total yearly electricity demand forecast of 428 TWh in the
high demand base case of the Integrated Resource Plan 2016 (IRP2016) by
the Department of Energy [4]. The year 2012 was extracted from the time-
series and distributed to the 27 buses in proportion to population in each
supply area, as determined by aggregation of the South African population
density published by World POP [13].

3.3. Existing power stations

The currently existing power stations in South Africa have been compiled
from Eskom holdings [14] listed online and the IRP2016 [4]. It is expected
that of these 51 GW generation capacities by the reference year 2040 about
half will have decommissioned save for 19.9 GW of coal stations, 0.7 GW
of hydro reservoir stations, 2.9 GW of pumped hydro storage and the Koe-
berg Nuclear power station with 1.86 GW. The remaining power plants are
attached at the bus of their supply area with marginal and capital costs
taken from their fixed and variable operation and maintenance costs plus
fuel costs. Additionally, the Cahora Bassa reservoir station in Mozambique
which has an installed capacity of 2.075 GW is attached as a 1.5 GW hydro
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reservoir station at the POLOKWANE supply area where the two HVDC
lines from the dam end in South Africa.

Pumped storage units as well as hydro reservoirs receive a weather de-
pendent hydro-electric in-flow. The re-analysis weather dataset CFSv2 by
the US National Oceanic Atmospheric Administration [15] provides water
run-off on a 0.2 x 0.2 deg. spatial raster (x ∈ X ) in hourly resolution since
2011. Following the methodology in [16, 17], we aggregated the total poten-
tial energy at height hx of the run-off data Rx in South Africa as well as in
Mozambique c as a simple proxy to their hydro-electric in-flow time-series

GH
c (t) = N

∑
x∈X (c)

hxRx(t) (12)

where N is chosen so that
∫
tG

H
c (t) dt matches the EIA annual hydroelectric-

ity generation [18]. The in-flow is distributed to all run-of-river and reservoir
capacities in proportion to their power capacity.

3.4. Expandable power generation

The existing generation and storage capacity at full availability amounts
to 26.8 GW, barely half the peak load of 62.3 GW; opening the possibility to
a large-scale restructuring of the generation technology mix. The model can
build wind turbines and solar panels within restrictive landuse limits and
open cycle and closed cycle gas turbines (OCGT/CCGT), nuclear reactors
and coal power stations at suitable locations and battery storage units at
every bus.

3.4.1. Wind and solar PV generation

The per-unit availability time-series ḡn,s,t for wind and solar photo-
voltaics for each supply region in the year 2012 have been calculated within
the Wind and Solar PV Resource Aggregation Study for South Africa [1].
Re-analysis wind speeds of the Wind Atlas for South Africa (WASA) [19]
were converted to available wind power feed-in for a capacity layout based
on a selection of five representative turbines suitable for low to high wind
speeds. Solar PV feed-in has been generated using satellite-imaging based
global irradiation with the SODA model [20] for fixed tilted PV installations.

For the estimation of maximal installable wind and solar PV generation
capacities Ḡn,s, we determine the available area An in each supply region by
restricting to landuse types “Grassland”, “Low Shrubland” and “Bare none
vegetated” in the South African National Land-Cover Dataset [21] that are
not part of protected or conservation areas in [22, 23]. 80% of this area is
split equally between wind and solar PV installations, leading to

Ḡn,w = 0.5·0.8·10 MW/km2·An , Ḡn,s = 0.5·0.8·33 MW/km2·An , (13)

where 10 MW/km2 and 33 MW/km2 are the technical potential densities
of wind and solar PV respectively [1]. The factor 0.8 was chosen so that
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these simplified assumptions applied to the renewable energy development
zones (REDZ) [24] alone lead approximately to the same available area of
53.4 ·103 km2 reported by the detailed evaluation of the resource aggregation
study.

Since the resulting renewable potentials overshoot the demand require-
ments by an order of magnitude, we evaluate in the following two different
scenarios, in the REDZ scenario renewable expansion is only allowed in the
REDZ areas [24], and a largely unrestricted scenario CORRIDORS where
the area is confined along the main transmission corridors defined by [25].

3.4.2. Storage

In addition to the pumped hydro storage installed today, the model may
build battery storage units at every bus. Their charging and discharging ef-
ficiencies, as well as cost assumptions for their power and energy storage ca-
pacities are taken from [26]. It is assumed that the charging and discharging
power capacities of a unit are equal, and the energy capacity En,s = h̄s ·Gn,s

is proportional to this power capacity. The factor h̄s determines the time
for charging or discharging the storage completely at maximum power, and
is set to h̄s = 3 h.

3.4.3. Non-renewable generation

The model contains four different types of expandable fossil fuel gen-
erators: OCGT and CCGT can be build at Saldana Bay, Richards Bay
and Coega, nuclear reactors are installable at Thyspunt and Koeberg and
new coal capacities can be added in Waterberg. In the CO2 limit scenarios
their usage is subject to the CO2 cap of Equation 11, while in the Emission
prices scenarios their marginal costs include externality costs for specific
emissions. The business-as-usual (BAU) scenario enforces the construction
of at least 10 GW of nuclear and coal capacities, each, in line with current
energy plans. The Redundant scenario ensures that peak demand plus a
10% reserve margin can be covered by conventional generators alone.

3.5. Cost assumptions

Investment, fixed and variable operation and maintenance (FOM and
VOM) costs and fuel prices and efficiencies for all assets are listed in Table 1.
They mirror the IRP2016 draft, except for the overnight capacity costs for
the renewable technologies and battery storage [4]. The CSIR calculated the
capacity costs for Wind and Solar by de-annualizing the winning bids in the
Renewable Independent Power Producer (REIPP) Procurement Programme
in 2016 (check!) as a dependable proxy to today’s installation costs to
13.25 R/MW for onshore wind and 9.24 R/MW for photovoltaics [26]. BNEF
forecasts a reduction of the levelized cost of electricity of PV by 2/3, by
1/2 for onshore wind and by 3/4 for lithium-ion batteries in respect to the
reference year 2040 [27]. As a conservative estimate, the proposed capacity
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Quantity Capital costs Marginal costs
Overnight Unit FOM Lifet. VOM Fuel cost Effic.

cost [R] [%/a] [a] [R/MWhel] [R/MWhth]

Wind 10000 kWel 4 20
Solar PV 6000 kWel 2 25
OCGT 8173 kWel 2 30 2.4 540 0.31
CCGT 8975 kWel 1.8 30 22 540 0.49
Coal 35463 kWel 2.6 30 80 98 0.37
Nuclear 60447 kWel 1.6 60 37 29 0.34
Battery stor. 12000 kWel 2.5 20 3.2 0.89
Transm. lin. 6000 MWkm 2 40

Table 1: Capital and marginal costs of extendable components

costs in this paper reflect half of this reduction potential, while discussing
the full projected interval in Section xxx. For the annualisation of overnight
costs a discount rate of 8% is used. The transmission investment of a line
with length l` is 6000 R/MWkm · l`fn−1 with an n−1 security factor fn−1 =
1/0.7.

In the Emission prices and CO2 limit scenarios the minimized objective
additionally includes the externality costs for specific emissions as referenced
in the Integrated Energy Plan by the DOE: 0.27 R/kgCO2, 7.6 R/kgSO2,
4.5 R/kgNOx, 41.5 R/tHg and 11.3 R/kgPM (particulate matter) [28]. Since
the prices are dual to emission caps, in the CO2 limit scenarios the CO2 price
is omitted from the optimization.

4. Model results

The model is optimized for eight different scenarios. The base case at
market costs, two different emission mitigation scenarios by emission prices
and 95% CO2 reduction cap. For each of these, we compare one scenario
with renewable generators constrained to REDZ and another one with the
whole transmission CORRIDORS available. Additionally, a business-as-
usual scenario with forced coal and nuclear and another one with redundant
conventional generators for maximal security are presented.

The externality costs of the IEP2016 introduced in Section 3.5 turn out
to solely replace 3 percentage points of demand generated in coal power
stations with energy from wind turbines, and are thus mostly ineffective for
the mitigation of emissions. Nevertheless, the energy mix of these least-cost
solutions shown in the left half of Figure 2 is already strongly based on
renewable sources with 57% wind and 13% solar PV, while at the same time
being independent of new storage units. Instead the varying in-feed of the
renewable sources is balanced by 22 GW of flexible open-cycle gas turbines,
supplying a mere 2.5% of demand. If the renewable generators can also be
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Figure 2: Matrix of scenario results. For each scenario, the top-left pie-chart shows the mix
of generated energy, the bar-charts decompose the cost per MWh into the technologies, the
map shows the distribution of generation, storage and existing and expanded transmission
capacities. The bar-charts show costs with and without externality costs by emissions and
separate the cost for new transmission and conventional generation capacities with white
xx hatches. The light gray map background highlights the areas available for renewable
installations (before landuse restrictions) in the REDZ and CORRIDORS scenarios (see
Sec. 3.4.1). The Base case at the top optimizes at market costs, while the Emission prices
and CO2 limit scenarios include externality costs by emissions (see Sec. 3.5). In the CO2

limit scenarios there is a strict 10MtCO2 cap (see Sec. 2.5). The BAU scenario enforces
10GW of nuclear and coal generation capacities, while the Redundant scenario covers
peak demand and a reserve margin with conventional generators (see Sec. 3.4.3)
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distributed to the eastern part of South Africa (within the CORRIDORS ),
the additional geographical smoothing by long distances allows to integrate
2 percentage points more wind energy with only 18.5 GW OCGT. The cost
per MWh lie between 650 R and 630 R.

A deep decarbonisation to a 95% CO2 reduction increases the model
costs by about 20%. The shadow price µCO2 to the CO2 emission constraint
from Equation (11) captures the linear sensitivity of the total system cost
to the CO2-cap. Its value 2690 − 2770 R/tCO2 gives an indication of the
CO2-price equivalent to the cap, which is 10 times the value assumed in
IEP2016.

The main cost driver in the CO2-Limit scenarios is the provision of flex-
ibility for integrating 97% of varying renewable generation: In the REDZ
scenario additional transmission capacities and CAES account for a cost in-
crease by 90 R/MWh, while the remaining 45 R/MWh are due to a renewable
capacity over-installation with about 19% of curtailment. This hints at a
great potential for coupling to the other energy sectors, and indeed prelim-
inary results from including a passenger transport sector based on battery
electric vehicles suggest that their batteries can replace the expensive CAES
units entirely.

The 3hr-batteries already available to the present version of the model
are not built, even though their marginal costs and efficiency are superior
at similar capital costs relative to power capacity; energy storage capacity
is evidently more important.

Lifting the confinement of renewable generation from REDZ to CORRI-
DORS reduces the costs for CAES and AC lines by 20 R/MWh each. The
need for flexibility reduces and generation is brought closer to load centres
around Johannesburg requiring less transmission expansion.

The hotspots for transmission expansion are relatively stable across all
scenarios, the most important lines are the new connection between EAST
LONDON and PINETOWN in the South East (10 − 13 GW in the CO2-
Limit scenarios) and lines from NAMAQUALAND and KIMBERLEY in
the North-West to the well-connected load-intensive central eastern South
Africa around Johannesburg, also making use of the current grid backbone
to PENINSULA passing through KAROO.

5. Critical Appraisal

There are a number of simplifications in the modelling presented here
that may affect the conclusions.

Available data on the electricity demand time series is not spatially dis-
aggregated; assuming, as we have done, that the load time series shape and
demand growth is the same at each node ignores local differences.

Information on the storage capacity of existing hydro reservoir dams was
not available and assumed to be 20.6 hrs like the average pumped hydro stor-

10



age capacity. In-flow time series are based on country-wide approximations,
ignoring local topography and basin drainage; in principle a full hydrological
model should be used.

The network is represented by standard transmission lines between 27
zones in a single voltage layer. Grid upgrades to prevent intrazonal conges-
tion in the transmission and distribution networks and between them can
not be assessed within the model.

Only a single year (2012) has been modelled, so the model may be over-
fitting to characteristics of this particular year.

Additional aspects, such as reserve power, stability, transmission losses,
efficiency savings, demand side management and sector-coupling have not
been considered.

These issues will be addressed in forthcoming studies.

6. Conclusions

In this paper the techno-economic model PyPSA-ZA has been presented
that optimises investment and operation costs of the South African elec-
tricity system with 27 buses in hourly resolution. Its focus lies on deep
decarbonisation scenarios.

By treating operations based on the linear power flow endogeneously, a
significant cost reduction potential from improved coordination within the
electricity system is uncovered, especially to the benefit of varying renewable
energy sources. Solutions integrating a 70% share of renewables were found
to be cost-optimal with flexible gas generation and by developing new trans-
mission corridors between EAST LONDON and PINETOWN and from the
resource-rich North-western supply regions. A 95% CO2 reduction relative
to today’s emission levels is achievable within the model assumptions by a
moderate 20% increase in cost.

The model builds exclusively on freely available data and open technolo-
gies making it suitable for an iterative and collaborative improvement by
many stakeholders. We hope that it will contribute towards a transparent
discussion of the future needs of the South African and Southern African
energy system.
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