

Significant High Grade Gold Intercepts Outside Defined Resource Area at Gwendolyn

Directors

Damien O'Reilly (Chairman) Glyn Povey (Managing Director) Gary Castledine Neville Bassett Robert Hyndes Brian Williams

Company Secretary

Neville Bassett

Address

Level 1, 3 Richardson Street West Perth WA 6005 P.O. Box 1325 West Perth WA 6872 Australia

Contact

P: +61 8 6188 7800 F: +61 8 9481 8772

contact@vectorresources.com.au
www.vectorresources.com.au

Share Registry

Link Market Services Ltd Ground Floor, 178 St Georges Tce Perth WA 6000 Australia

P: +61 1300 554 474 F: +61 2 9287 0303

www.linkmarketservices.com.au

Key Highlights

- Major high grade gold intercepts identified at Gwendolyn East outside the existing resource and unclassified mineralisation;
- Mineralisation continues to be open in all directions;
- Possible parallel high grade load to west of existing resource;
- Significant intercepts include:
 - 5m @ 22.68 g/t from 21m
 - Inclusive of 1m @ 107.70 g/t from 24m
 - 1m @ 20.51 g/t from 36m
 - 2m @ 12.44 g/t from 117m
 - 4m @ 8.38 g/t from 111m
 - 10m @ 7.12 g/t from 124m

- 7m @ 7.42 g/t from 125m
- 6m @ 4.52 g/t from 80m
- 4m @ 3.09 g/t from 28m
- 2m @ 7.21 g/t from 77m
- 8m @ 3.09 g/t from 48m

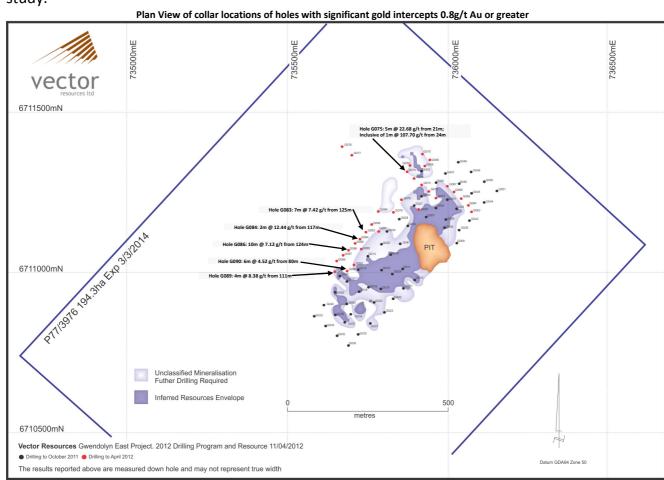
• The results indicate continued mineralisation to the West and North-West of previously known mineralisation envelopes.

Vector Resources Ltd (ASX: VEC) ("Vector" or "the Company") is pleased to announce that it has received initial assay results from the high priority drilling of the Phase 3 RC program at the company's Gwendolyn East Project which commenced in February 2012.

The initial assay results continue to be exceptional indicating the mineralisation continues to the West and North-West of the current mineralisation envelope. 22 holes have identified single metre sample assay results with intercepts of 0.8 g/t or greater.

Chairman; Damien O'Reilly stated "The Company is fortunate to have such an exciting prospect. With each successive exploration programme undertaken by Vector Resources, the mineralisation envelope continues to grow. The most recent outcome of drilling at our Gwendolyn project clearly attests to this: the outstanding results of which will further enhance and expand the ore boundaries, and with a subsequent increase in the resource."

A table of the drill hole single assays and composites is provided at the end of this announcement.


Confirmation of extension of significant mineralisation OUTSIDE known resource area

Most importantly, the majority of these holes drilled to-date have all been outside the currently 'defined' JORC compliant resource and the unclassified target mineralisation* stated by SRK Consulting late last year. These boundaries will continue to be tested in the coming months as well as completing infill drilling of the unclassified material and inferred resource.

Phase 3 Drill Program

The Phase 3 drill program consists of 147 Reverse Circulation (RC) holes totalling 17,294 metres and 8 Diamond drill (DD) PQ sized holes totalling 1,210 metres. This program was designed with three main aims, firstly to test the potential extensions of mineralisation beyond the current envelope. Secondly, to complete infill drilling within the unclassified exploration target to meet the required drill density for JORC classification and thirdly to obtain suitable diamond core samples to conduct preliminary metallurgical and geotechnical analysis for the future feasibility study.

The plan view above represents the collar locations of the RC holes that reported significant intercepts above 0.8 g/t.

Results

Since RC drilling commenced in February 2012, initial assay results from holes G054 to G098 have been received. 22 holes of the 45 initially assayed returned significant single metre intercepts with a further 4 holes with composite results requiring further analysis. Of these initial 45 holes submitted, 9 holes totalling 1,336 samples have assay results pending.

These holes are indicating that the mineralisation continues to dip to the West. Significant high grade intercepts identified in holes G083, G084, G086, G089, G090 and G097 on the western boundary of the known mineralisation would indicate the continuation of previously identified high grade zones of 10m @ 4.13 g/t including 2m @ 13.94, 7m @ 22.88 g/t, 1m @ 27.6 g/t, 2m @ 11.95 g/t, 3m @ 57.91 g/t, 2m @ 4.16 g/t, 2m @ 8.93 g/t and 1m @ 7.52 g/t identified in the Phase 1 and 2 program from holes G014, G016, G017, G019, G028 and G041.

Hole G075 drilled on the North-west extent of the current drill program has identified a possible parallel high grade load with 5m @ 22.68 Au g/t inclusive of 1m @ 107.70 Au g/t from 21 metres down hole. This intercept will be further explored during this Phase 3 and future Phase 4 drill program.

Appendix 1 – Drill hole single assay and composites

Table of drill hole single assay results with significant gold intercepts 0.8g/t Au or greater

SiteID	SampleID	Din	Azimuth	East	North		th significant go			Significant Intercepts
GO46		-60	130	736029		120	25	26	3.90	o.g.meant meereepts
GO53		-60	130	735676		120	99	100	2.28	
G058	S14476	-00	130	733070	0710313	120	16	17	0.83	
G058	S14489						28	29	1.69	
G058	S14490						29	30	4.58	
G058	S14491						30	31	4.49	4m @ 3.09 g/t
G058	S14492	-90	0	735905	6711214	72	31	32	1.58	
G058	S14532	30		733303	0711214	, _	68	69	2.45	
G058	S14533						69	70	2.71	
G058	S14534						70	70	1.78	4m @ 2.08 g/t
G058	S14535						70	72	1.39	
G059	S14535	-60	130	735877	C71121C	96	50	51	0.81	
		-00	130	733677	6711346	90				
G065	S15199	-60	130	736034	6711244	100	56	57	0.87	2m @ 0.93 g/t
G065	S15200						57	58	0.98	
G066	S15284			736008	6711267	100	36	37 62	20.51	
G066	S15310	-60	130				61	62	8.45	2m @ 4.63 g/t
G066	S15311						62	63	0.81	
G066	S15333						82	83	1.09	
G067	S15457	-60	130	735989	6711285	114	99	100	1.28	2m @ 1.11 g/t
G067	S15458	CO	120	725022	C711247	100	100	101	0.93	
G068	S15497	-60	130		6711347	108	22	23	0.91	
G070	S15725	-60	130	1	6711380	120	28	29	1.01	
G072	S16000	-60	130	735940	6711273	100	64	65	2.12	
G073	S16055						16	17	0.80	2m @ 1 11 ~/+
G073	S16056	C0	120	725040	C711300	100	17	18	1.64	3m @ 1.14 g/t
G073	S16057	-60	130	735918	6711288	100	18	19	0.98	
G073	S16073						33	34	2.34	
G073	S16084						43	44	0.81	
G075	S16273						21	22	0.84	2m @ 1.82 g/t
G075	S16274	-60	130	735864	6711330	100	22	23	2.80	-
G075	S16276						24	25	107.70	2m @ 54.55 g/t
G075	S16277						25	26	1.39	Ŭ.
G076	S16396		465			0.5	36	37	3.78	2m @ 2.30 g/t
G076	S16397	-60	130	/35671	6711401	84	37	38	0.81	
G076	S16405						45	46	0.88	
G079	S16714	-60	130	735822	6711200	126	40	41	1.05	
G079	S16728						53	54	0.87	
G083	S17201						118	119	4.13	
G083	S17208						125	126	4.29	
G083	S17209						126	127	18.30	
G083	S17210						127	128	2.63	
G083	S17211						128	129	9.19	7m @ 7.42 g/t
G083	S17212	-60	130	735703	6711396	150	129	130	5.42	
G083	S17213		130	733703	0/11390	130	130	131	11.20	
G083	S17214						131	132	0.89	
G083	S17220		000000000000000000000000000000000000000				136	137	1.62	
G083	S17227						143	144	2.00	
G083	S17228						144	145	0.87	3m @ 1.28 g/t
G083	S17229						145	146	0.98	

SiteID	SampleID	Dip	Azimuth	East	North	TDepth	DepthFrom	DepthTo	Au g/t	Significant Intercepts								
G084	S17337						96	97	3.43									
G084	S17341						100	101	1.84									
G084	S17359	-60	130	735686	6711377	150	117	118	23.67	2								
G084	S17360						118	119	1.21	2m @ 12.44 g/t								
G084	S17388						144	145	1.10									
G085	S17483		400	-0-6-4	6744060	474	83	84	1.08									
G085	S17486	-60	130	/356/1	6711362	174	86	87	0.90									
G086	S17711						124	125	4.48	2 0 17 05 /								
G086	S17712						125	126	31.22	2m @ 17.85 g/t								
G086	S17714	-60			6711344		127	128	14.11		or 10 m @ 7.12 g/t							
G086	S17716			735653			128	129	11.96		7.1							
G086	S17718		130			168	130	131	4.28		m @							
G086	S17719						131	132	1.61		r 10							
G086	S17720						**************************************	132	133	2.20	4m @ 2.22 g/t	ō						
G086	S17721								133	134	0.80	1						
G086	S17735						146	147	1.05									
G087	S17816						54	55	1.04									
G087	S17822	-60	130	735634	6711330	126	60	61	1.17									
G087	S17836						73	74	3.37									
G089	S18164						106	107	0.98									
G089	S18170	-60		735643	6711016		111	112	22.55	4m @ 8.38 g/t								
G089	S18171		130			156	112	113	8.89									
G089	S18172						113	114	1.00									
G089	S18173						114	115	1.09									
G090	S18303						80	81	20.57		2:							
G090	S18305			735680	6711019	150	82	83	1.42	2m @ 1.83 g/t	9 4.52 t							
G090	S18307	-60					84	85	1.08		or 6 m @ g/t							
G090	S18308						85	86	2.57		or 6							
G090	S18321						97	98	1.04									
G090	S18323		130				99	100	1.93									
G090	S18325						101	102	0.80									
G090	S18329			***************************************				105	106	4.06								
G090	S18334							109	110	1.02								
G090	S18338													113	114	0.91		
000000000000000000000000000000000000000	S18341											116	117	0.84				
	S19031	-60	130	735775	6711204	96	69	70	1.60									
G097	S19146	- 55	133		5.11204	33	77	78	13.05									
G097	S19147			735776	6711142		78	79	1.36	2m @ 7.21 g/t								
G097	S19152	-60	50 130				83	84	2.11									
G097	S19163						93	94	2.36									
G097	S19164					120	94	95	1.22	***************************************								
G097	S19104 S19172						100	101	2.55	1								
G097	S19172						101	102	3.95									
G097	S19173						101	103	0.89	311 @ 2.40 g/ t								
G097	S19174 S19267						66	67	1.47									
G098	S19267						67	68	0.81	3m @ 1.29 g/t								
G098	S19269	-60	-60	130	735754	6711162	120	68	69	1.58	JII @ 1.23 g/ t							
G098	S19269 S19273						}											
GUY	3137/3						71	72	0.87									

^{*} Notes on sample intercept widths: The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

Composite samples received from 4 holes, have returned results above 0.8 g/t which require further single metre sample analysis, these results are currently pending.

Table of drill hole assay results of Composites with significant gold intercepts 0.8g/t Au or greater

						-				_			
SiteID	SampleID	Dip	Azimuth	North	East	TDepth	DepthFrom	DepthTo	Au g/t	Significant Intercepts			
G058	C03648	00	00	00	-90	0	725005	6711214	72	48	52	3.18	8m @ 3.09 g/t
G058	C03649	-90	U	733903	6/11214	/2	52	56	3.00	oiii @ 5.09 g/t			
G060	C03690	-90	0	735984	6711237	74	40	44	4.76	4m @ 4.76 g/t			
G067	C03869	-60	130	725090	6711285	114	40	44	0.98	8m @ 0.92 g/t			
G067	C03870	-00	130	733969	0/11203	114	44	48	0.86	6111 @ 0.92 g/t			
G069	C03925	-60	130	735905	6711621	100	32	36	1.01	4m @ 1.01 g/t			

This Phase 3 drill program has also revealed larger bands of 0.2 to 0.8 Au g/t intercepts between the significant intercepts reported. A total of 145 single metre intercepts were also identified within the range of 0.2 to 0.8 Au g/t in the 22 holes reported as having significant intercepts. These results have prompted the sampling of single metre intervals from the Phase 1 and 2 drill programs previously not sampled. If this trend continues it has the potential to significantly reduce the internal waste volumes.

Significant Upside

Gwendolyn has the potential to increase the current resource, with encouraging fundamentals including:

- High grade intercepts identified outside current mineralisation envelope;
- Mineralisation remains open in all directions;
- Extensional exploration will continue to push existing ore boundaries as a priority;
- Infill drilling of the unclassified material is yet to commence; and
- Possible parallel high grade load identified in hole G075 starting from 21 metres down hole, west of known high grade zone.

ENDS

The metre intervals detailed in the table above are measured down-hole lengths and are unlikely to be indicative of true width.

In accordance with Clause 18 of the JORC Code, it is important to note that the 'Target Resource' referred to above remains subject to further exploration and evaluation to bring the 'unclassified material' to a JORC Compliant resource. The current interpretation is conceptual in nature and remains preliminary and is based on exploration, evaluation and resource definition work undertaken to date.

Competent Person's Statement:

The information in this report that relates to Exploration Results or Mineral Resources of Vector Resources Ltd and its subsidiaries is based on information reviewed by Arnel Mendoza, who is a Member of the Australian Institute of geoscientists ("AIG").

Mr Mendoza has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Arnel Mendoza consents to the inclusion in this announcement of the matter based on his information in the form and context it appears.

^{*} Notes on sample intercept widths.

^{*} Notes on Exploration Targets